Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ Open ; 13(1): e066626, 2023 01 12.
Article in English | MEDLINE | ID: covidwho-2193797

ABSTRACT

OBJECTIVES: To reliably quantify the radiographic severity of COVID-19 pneumonia with the Radiographic Assessment of Lung Edema (RALE) score on clinical chest X-rays among inpatients and examine the prognostic value of baseline RALE scores on COVID-19 clinical outcomes. SETTING: Hospitalised patients with COVID-19 in dedicated wards and intensive care units from two different hospital systems. PARTICIPANTS: 425 patients with COVID-19 in a discovery data set and 415 patients in a validation data set. PRIMARY AND SECONDARY OUTCOMES: We measured inter-rater reliability for RALE score annotations by different reviewers and examined for associations of consensus RALE scores with the level of respiratory support, demographics, physiologic variables, applied therapies, plasma host-response biomarkers, SARS-CoV-2 RNA load and clinical outcomes. RESULTS: Inter-rater agreement for RALE scores improved from fair to excellent following reviewer training and feedback (intraclass correlation coefficient of 0.85 vs 0.93, respectively). In the discovery cohort, the required level of respiratory support at the time of CXR acquisition (supplemental oxygen or non-invasive ventilation (n=178); invasive-mechanical ventilation (n=234), extracorporeal membrane oxygenation (n=13)) was significantly associated with RALE scores (median (IQR): 20.0 (14.1-26.7), 26.0 (20.5-34.0) and 44.5 (34.5-48.0), respectively, p<0.0001). Among invasively ventilated patients, RALE scores were significantly associated with worse respiratory mechanics (plateau and driving pressure) and gas exchange metrics (PaO2/FiO2 and ventilatory ratio), as well as higher plasma levels of IL-6, soluble receptor of advanced glycation end-products and soluble tumour necrosis factor receptor 1 (p<0.05). RALE scores were independently associated with 90-day survival in a multivariate Cox proportional hazards model (adjusted HR 1.04 (1.02-1.07), p=0.002). We replicated the significant associations of RALE scores with baseline disease severity and mortality in the independent validation data set. CONCLUSIONS: With a reproducible method to measure radiographic severity in COVID-19, we found significant associations with clinical and physiologic severity, host inflammation and clinical outcomes. The incorporation of radiographic severity assessments in clinical decision-making may provide important guidance for prognostication and treatment allocation in COVID-19.


Subject(s)
COVID-19 , Pulmonary Edema , Humans , COVID-19/diagnostic imaging , Prognosis , SARS-CoV-2 , Inpatients , Reproducibility of Results , RNA, Viral , Respiratory Sounds , Pulmonary Edema/diagnostic imaging , Cohort Studies , Lung/diagnostic imaging , Edema , Respiration, Artificial
2.
J Infect Dis ; 2022 May 02.
Article in English | MEDLINE | ID: covidwho-1831179

ABSTRACT

Plasma SARS-CoV-2 viral RNA (vRNA) levels are predictive of COVID-19 outcomes in hospitalized patients, but whether plasma vRNA reflects lower respiratory tract (LRT) vRNA levels is unclear. We compared plasma and LRT vRNA levels in serially collected samples from mechanically ventilated patients with COVID-19. LRT and plasma vRNA levels were strongly correlated at first sampling (n=33, r=0.83, p<10-9) and then declined in parallel in available serial samples except in non-survivors who exhibited delayed vRNA clearance in LRT samples. Plasma vRNA measurement may offer a practical surrogate of LRT vRNA burden in critically ill patients, especially early after ICU admission.

3.
ATS Sch ; 2(1): 19-28, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-1191232

ABSTRACT

The coronavirus disease (COVID-19) pandemic has created significant stressors for the academic and scientific community, with unique challenges for early-career physician-scientists. The pandemic-related disruptions have significantly affected research productivity, access to mentoring, professional development and networking opportunities, funding, and personal wellness. This is especially true for pulmonary and critical care medicine faculty because of the burden of specialized clinical care responsibilities that the COVID-19 pandemic has demanded. Departmental, institutional, and national leadership should foster open dialogue to identify and mitigate these challenges to promote ongoing career development of early-career physician-scientists. Implementation of thoughtful interventions to address these challenges will provide essential support for junior faculty and help retain a generation of physician-scientists.

4.
Haematologica ; 105(12): 2769-2773, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-868908

ABSTRACT

SARS-CoV-2 disease (COVID-19) has affected over 22 million patients worldwide as of August 2020. As the medical community seeks better understanding of the underlying pathophysiology of COVID-19, several theories have been proposed. One widely shared theory suggests that SARS-CoV-2 proteins directly interact with human hemoglobin (Hb) and facilitate removal of iron from the heme prosthetic group, leading to the loss of functional hemoglobin and accumulation of iron. Herein, we refute this theory. We compared clinical data from 21 critically ill COVID-19 patients to 21 non-COVID-19 ARDS patient controls, generating hemoglobin-oxygen dissociation curves from venous blood gases. This curve generated from the COVID-19 cohort matched the idealized oxygen-hemoglobin dissociation curve well (Pearson correlation, R2 = 0.97, P.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Hemoglobins/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Protein Binding/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL